3 research outputs found

    A scalar auxiliary variable unfitted FEM for the surface Cahn-Hilliard equation

    Full text link
    The paper studies a scalar auxiliary variable (SAV) method to solve the Cahn-Hilliard equation with degenerate mobility posed on a smooth closed surface {\Gamma}. The SAV formulation is combined with adaptive time stepping and a geometrically unfitted trace finite element method (TraceFEM), which embeds {\Gamma} in R3. The stability is proven to hold in an appropriate sense for both first- and second-order in time variants of the method. The performance of our SAV method is illustrated through a series of numerical experiments, which include systematic comparison with a stabilized semi-explicit method.Comment: 23 pages, 12 figure

    A decoupled, stable, and linear FEM for a phase-field model of variable density two-phase incompressible surface flow

    Full text link
    The paper considers a thermodynamically consistent phase-field model of a two-phase flow of incompressible viscous fluids. The model allows for a non-linear dependence of fluid density on the phase-field order parameter. Driven by applications in biomembrane studies, the model is written for tangential flows of fluids constrained to a surface and consists of (surface) Navier-Stokes-Cahn-Hilliard type equations. We apply an unfitted finite element method to discretize the system and introduce a fully discrete time-stepping scheme with the following properties: (i) the scheme decouples the fluid and phase-field equation solvers at each time step, (ii) the resulting two algebraic systems are linear, and (iii) the numerical solution satisfies the same stability bound as the solution of the original system under some restrictions on the discretization parameters. Numerical examples are provided to demonstrate the stability, accuracy, and overall efficiency of the approach. Our computational study of several two-phase surface flows reveals some interesting dependencies of flow statistics on the geometry.Comment: 22 pages, 5 figures, 1 tabl

    On fusogenicity of positively charged phased-separated lipid vesicles: experiments and computational simulations

    Full text link
    This paper studies the fusogenicity of cationic liposomes in relation to their surface distribution of cationic lipids and utilizes membrane phase separation to control this surface distribution. It is found that concentrating the cationic lipids into small surface patches on liposomes, through phase-separation, can enhance liposome's fusogenicity. Further concentrating these lipids into smaller patches on the surface of liposomes led to an increased level of fusogenicity. These experimental findings are supported by numerical simulations using a mathematical model for phase-separated charged liposomes. Findings of this study may be used for design and development of highly fusogenic liposomes with minimal level of toxicity
    corecore